Maximum Matching Width: new characterizations and a fast algorithm for dominating set

정지수 (KAIST)

joint work with Sigve Hortemo Sæther and Jan Arne Telle (University of Bergen)

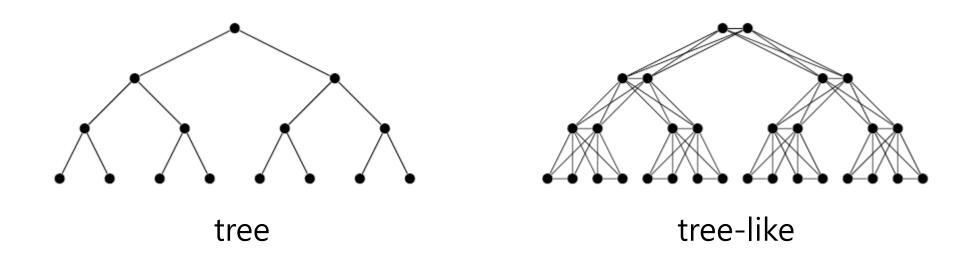
1st Korean Workshop on Graph Theory 2015.8.27. KAIST

Graph width parameters

- tree-width (Halin 1976, Robertson and Seymour 1984)
- branch-width (Robertson and Seymour 1991)
- carving-width (Seymour and Thomas 1994)
- clique-width (Courcelle and Olariu 2000)
- rank-width (Oum and Seymour 2006)
- boolean-width (Bui-Xuan, Telle, Vatshelle 2011)
- maximum matching-width (Vatshelle 2012)

Tree-width

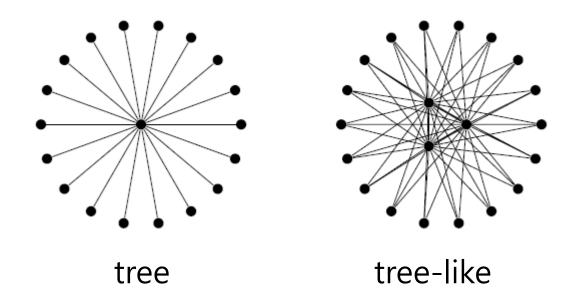
tree-width (Halin 1976, Robertson and Seymour 1984)
 A measure of how "tree-like" the graph is.



Figures from http://fptschool.mimuw.edu.pl/slides/lec6.pdf

Tree-width

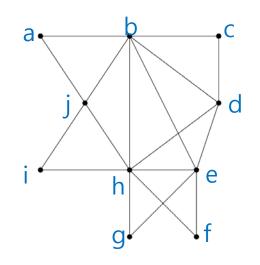
tree-width (Halin 1976, Robertson and Seymour 1984)
 A measure of how "tree-like" the graph is.

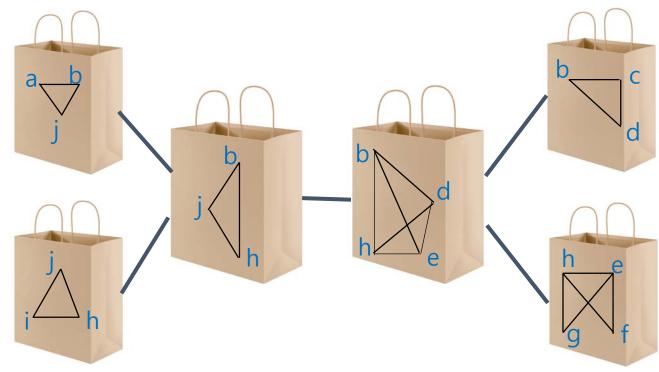


Figures from http://fptschool.mimuw.edu.pl/slides/lec6.pdf

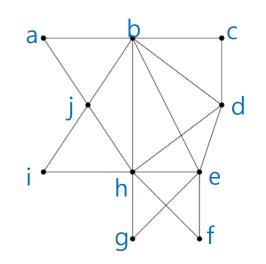
A *tree-decomposition* of a graph *G* is a pair $(T, \{X_t\}_{t \in V(T)})$ consisting of a tree *T* and a family $\{X_t\}_{t \in V(T)}$ of subsets X_t of V(G), called *bags*, satisfying the following three conditions:

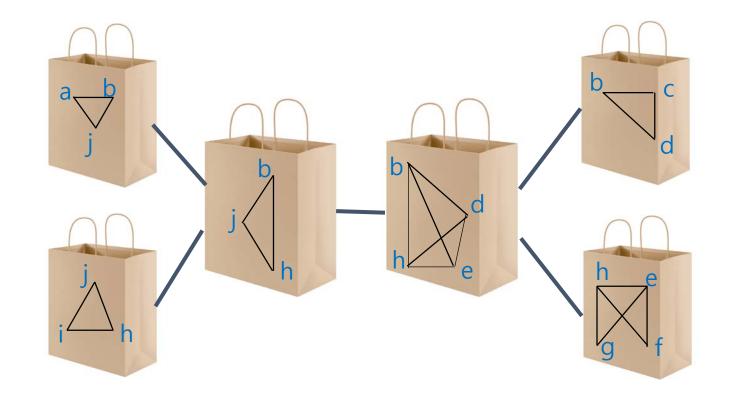
- 1. each vertex of G is in at least one bag,
- 2. for each edge uv of G, there exists a bag that contains both u and v,
- 3. if X_i and X_j both contain a vertex v, then all bags X_k in the path between X_i and X_j contain v as well.





The *width* of a tree-decomposition $(T, \{X_t\}_{t \in V(T)})$ is $\max|X_t| - 1$. The *tree-width* of a graph *G*, denoted by tw(G), is the minimum width over all possible tree-decompositions of G.

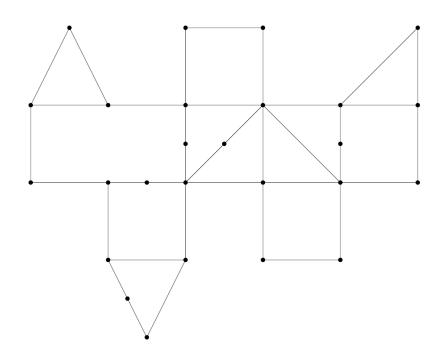


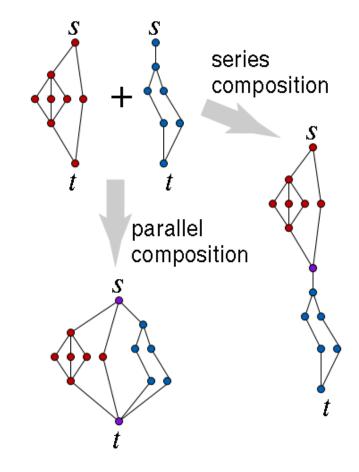


Examples

- tree-width $\leq 1 \Leftrightarrow$ a forest \Leftrightarrow no cycle
- tree-width $\leq 2 \Leftrightarrow$ a series-parallel graph

 \Leftrightarrow no K_4 minor

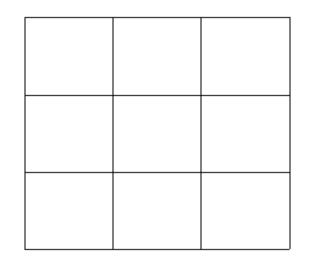




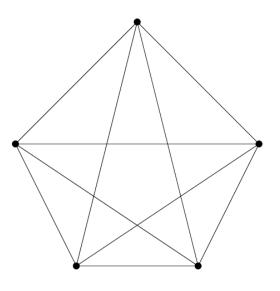
Figures from wikipedia

Examples

- tree-width $\leq 1 \Leftrightarrow$ a forest \Leftrightarrow no cycle
- tree-width $\leq 2 \Leftrightarrow$ a series-parallel graph \Leftrightarrow no K_4 minor
- The tree-width of a $k \times k$ grid is k.
- The tree-width of K_n is n-1.



 4×4 grid



Why treewidth?

by Fedor V. Fomin (http://fptschool.mimuw.edu.pl/s lides/lec6.pdf)

Very general idea in science: large structures can be understood by breaking them into small pieces

In Computer Science: divide and conquer;

dynamic programming

In Graph Algorithms: Exploiting small

separators

Courcelle's theorem

Theorem (Courcelle 1990)

Let *P* be a property that can be expressed in *MSO*₂ logic. If *G* is a graph of bounded tree-width, then there exists a linear-time algorithm that tests whether *G* has property *P*.

e.g. 3-Coloring, Hamiltonicity, Subgraph Isomorphism, Minor Test, Vertex Cover, Dominating Set, Independent Set, Steiner Tree, Feedback Vertex Set

Excluded Grid Theorem

The tree-width of a $k \times k$ grid is k.

If a graph contains a large grid as a minor, then its tree-width is also large.

Theorem (Robertson, Seymour, Thomas 1994)

If the tree-width of a graph G is at least 20^{2k^5} , then G has a $k \times k$ grid as a minor.

Theorem (Robertson, Seymour, Thomas 1994)

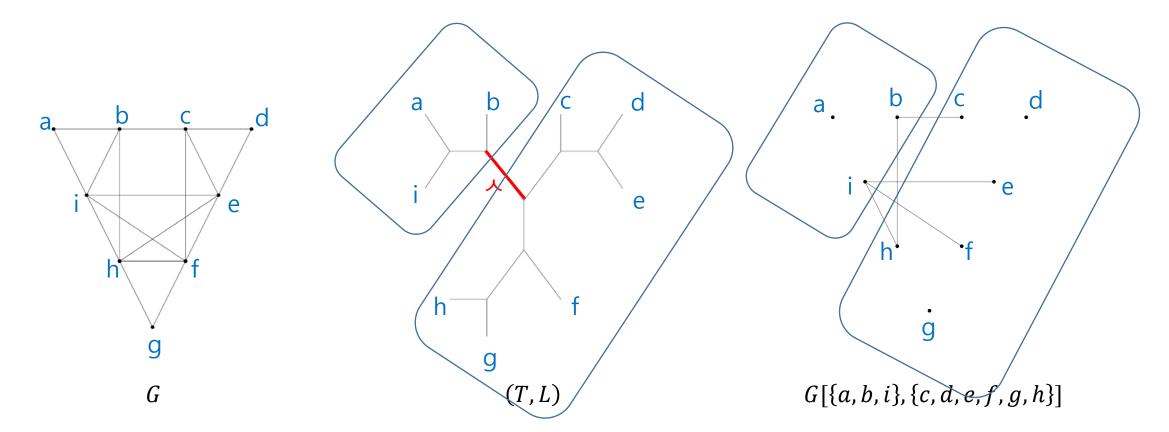
If the tree-width of a planar graph G is at least 6k - 4, then G has a $k \times k$ grid as a minor.

Graph width parameters

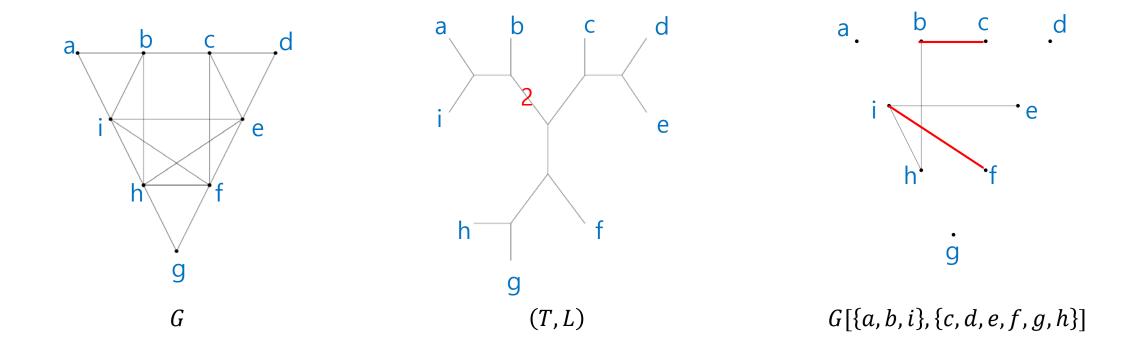
- tree-width (Halin 1976, Robertson and Seymour 1984)
- branch-width (Robertson and Seymour 1991)
- carving-width (Seymour and Thomas 1994)
- clique-width (Courcelle and Olariu 2000)
- rank-width (Oum and Seymour 2006)
- boolean-width (Bui-Xuan, Telle, Vatshelle 2011)
- maximum matching-width (Vatshelle 2012)

A branch-decomposition (T, L) over the vertices of a graph G consists of a tree T where all internal vertices have degree 3 and a bijective function L from the leaves of T to the vertices of G. The value of an edge \checkmark of T is

the size of the maximum matching of $G[\{a, b, i\}, \{c, d, e, f, g, h\}]$.

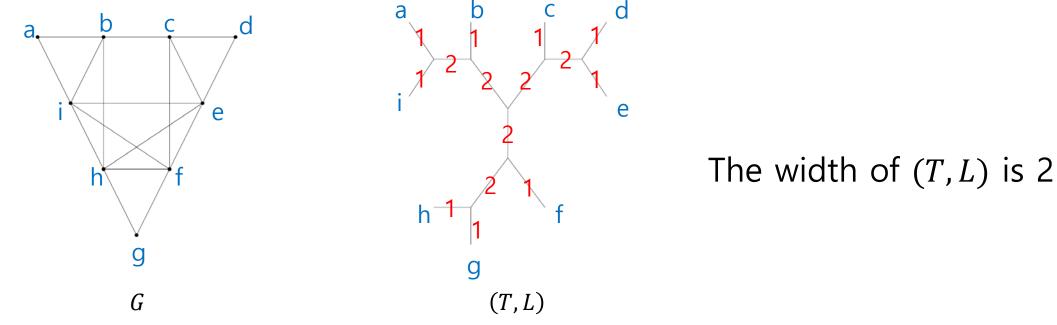


A branch-decomposition (T, L) over the vertices of a graph G consists of a tree T where all internal vertices have degree 3 and a bijective function L from the leaves of T to the vertices of G. The value of an edge \land of T is the size of the maximum matching of $G[\{a, b, i\}, \{c, d, e, f, g, h\}]$.



A *branch-decomposition* (*T*, *L*) over the vertices of a graph *G* consists of a tree *T* where all internal vertices have degree 3 and a bijective function *L* from the leaves of *T* to the vertices of *G*.
The width of a branch-decomposition (*T*, *L*) is the maximum value among all edges.

The maximum matching-width (mm-width, mmw(G)) of a graph G is the minimum width over all possible branch-decompositions over V(G).



Theorem (Vatshelle 2012)

For every graph G, $mmw(G) \le tw(G) + 1 \le 3 mmw(G)$.

A graph *G* has bounded tree-width if and only if *G* has bounded mm-width.

We want to solve Graph Problems efficiently.

A Dominating Set of a graph G is a set D of vertices such that $N(D) \cup D = V(G)$.

What is the minimum size of a dominating set of G?

Using tree-width

Theorem (van Rooij, Bodlaender, Rossmanith 2009)

Minimum Dominating Set Problem can be solved in time $O^*(3^t)$ when a graph and its tree-decomposition of width t is given.

Theorem (Lokshtanov, Marx, Saurabh 2011)

Minimum Dominating Set Problem cannot be solved in time $O^*((3-\varepsilon)^t)$ where t is the tree-width of the given graph.

Using mm-width

Theorem (J., Sæther, Telle 2015+)

Minimum Dominating Set Problem can be solved in time $O^*(8^m)$ when a graph and its branch-decomposition of mm-width m is given.

Using tree-width: $O^*(3^t)$ Using mm-width: $O^*(8^m)$

Our algorithm is faster when $8^m < 3^t$, that is, 1.893 mmw(G) < tw(G).

Note that for every graph G, $mmw(G) \le tw(G) + 1 \le 3 mmw(G)$.

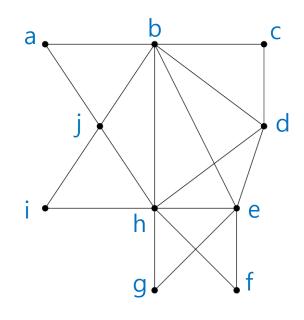
Using mm-width

Theorem (J., Sæther, Telle 2015+)

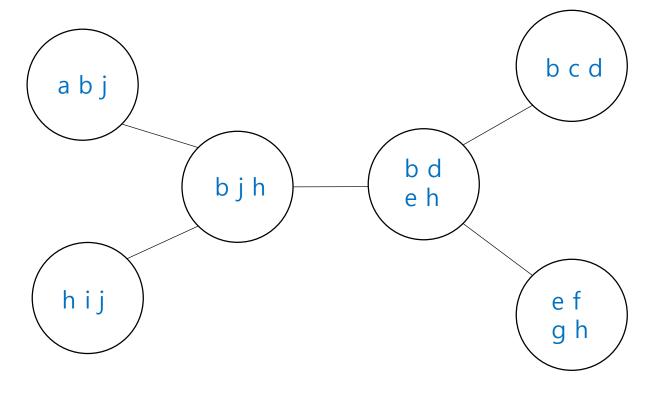
Minimum Dominating Set Problem can be solved in time $O^*(8^m)$ when a graph and its branch-decomposition of mm-width m is given.

Proof ideas

- 1. New characterization of graphs of mm-width at most k
- 2. Fast Subset Convolution

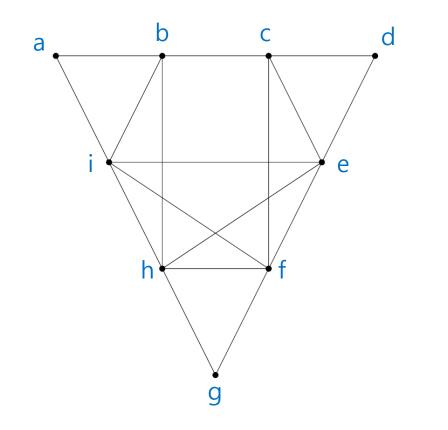


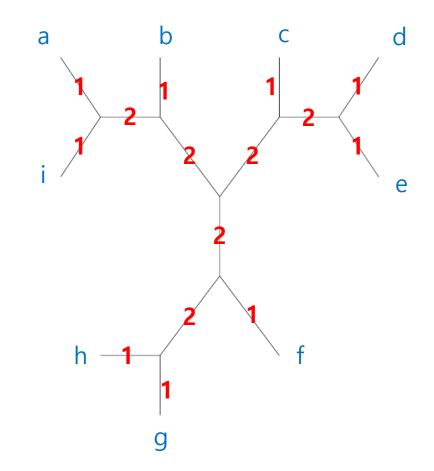
graph

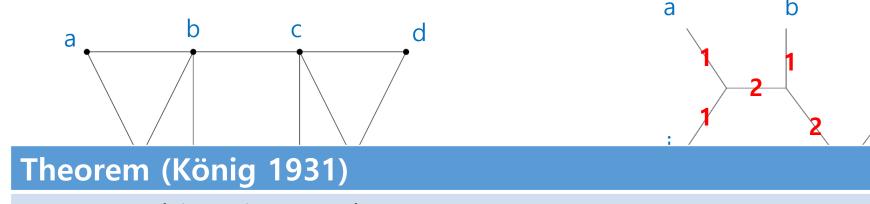


tree-decomposition

For any $k \ge 2$, a graph G on vertices v_1, v_2, \dots, v_n has tree-width at most k if and only if there are subtrees T_1, T_2, \dots, T_n of a tree T where all internal vertices have degree 3 such that 1) if $v_i v_i \in E(G)$, then T_i and T_i have at least one vertex of T in common, 2) for each vertex of T, there are at most k-1subtrees containing it.

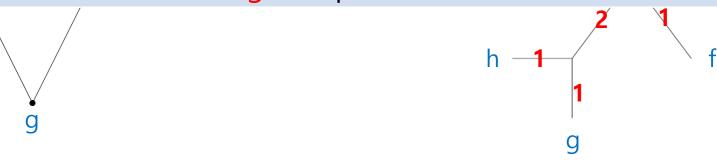


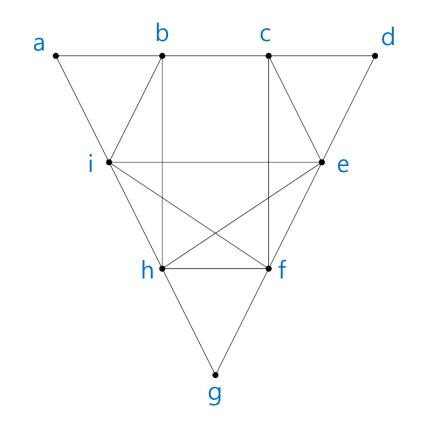


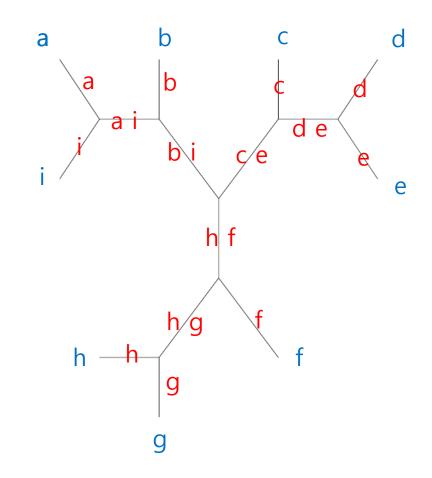


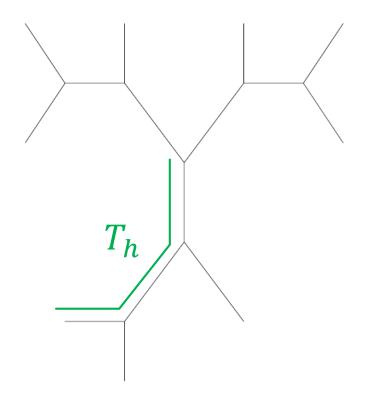
For every bipartite graph G,

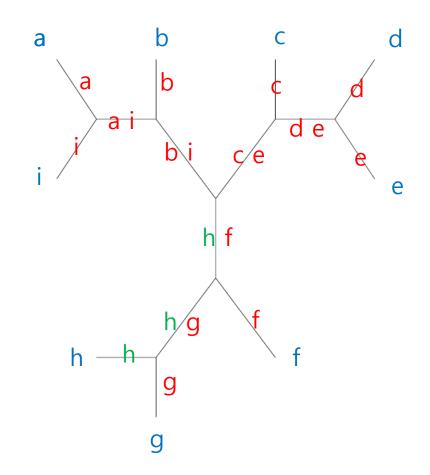
the size of a maximum matching is equal to the size of a minimum vertex cover.











- For any $k \ge 2$, a graph G on vertices $v_1, v_2, ..., v_n$ has mm-width at most k if and only if
- there are subtrees $T_1, T_2, ..., T_n$ of a tree T where all internal vertices have degree 3
- such that 1) if $v_i v_j \in E(G)$, then T_i and T_j have at least one vertex of T in common,
 - 2) for each edge of *T*, there are at most *k* subtrees containing it.

Theorem (J., Sæther, Telle 2015+)

For any $k \ge 2$, a graph G on vertices v_1, v_2, \dots, v_n has mm-width at most k if and only if there are subtrees T_1, T_2, \dots, T_n of a tree T where all internal vertices have degree 3 such that 1) if $v_i v_i \in E(G)$, then T_i and T_j have at least one vertex of T in common, 2) for each edge of T, there are at most k subtrees containing it.

New characterization

For any $k \ge 2$, a graph G on vertices v_1, v_2, \dots, v_n has tree-width (mm-width) at most k if and only if there are subtrees T_1, T_2, \dots, T_n of a tree T where all internal vertices have degree 3 such that 1) if $v_i v_j \in E(G)$, then T_i and T_j have at least one vertex of T in common, 2) for each vertex (edge) of T, there are at most k - 1 (at most k) subtrees containing it. Thank you

New characterization (branch-width)

For any $k \ge 2$, a graph G on vertices v_1, v_2, \dots, v_n has branch-width at most k if and only if there are a tree T of max degree at most 3 and subtrees T_1, T_2, \dots, T_n such that 1) if $v_i v_i \in E(G)$ then T_i and T_i have at least one edge of T in common, 2) for each edge of T, there are at most k subtrees using it.